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Abstract. Series analysis techniques are used to form estimates of the local ( ~ 1 1 )  and layer 
exponents (y l )  for self-avoiding walks on the tetrahedral lattice, confined to a half space. 
The estimates are compared with predictions of surface scaling and with a renormalisation 
p o u p  calculation of Bray and Moore. In addition, a new upper bound on 711 is derived for 
the self-avoiding walk problem. 

1. Introduction 

Self-avoiding walks terminally attached to a surface, and confined to lie in or on one side 
of this surface, have received a good deal of attention because of their importance in the 
theory of polymer adsorption (Silberberg 1967). Their relationship to critical 
phenomena in systems with a free surface (de Gennes 1976, Barber et a1 1978) means 
both that their properties can be predicted using standard techniques from theory of 
critical phenomena and also that they can be used as tests of the applicability of these 
theories to the polymer version of the problem. 

Define c'," as the number of n-step self-avoiding walks, weakly embeddable in a 
lattice, which originate in the plane t = 0 and have all vertices with non-negative 
z-coordinate. Let c?*" be the number of these which also have their last vertex in the 
plane z = 0. The only rigorous result on the behaviour of these quantities seems to be 
that 

where p is the 'effective coordination number' of the lattice, i.e. the exponential of the 
connective constant (Whittington 1975). If we define the generating functions 

and 

(1.3) 

then (1.1) implies that xl(x) and ,yll(x) will both diverge at x = p- ' .  The behaviour 
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close to this singularity is not known but, by analogy with other critical phenomena 
problems, one would expect that for x close to p-' 

X i b )  -A i(1- px)-"' (1.4) 

and 

xi i (x)  -Aii(1 -pX)-"". (1.5) 

Accepting these assumed functional forms, one can attempt to relate the critical 
exponents y1 and yl l  to bulk exponents. Without any additional assumptions, one can 
show (Whittington 1975, Middlemiss and Whittington 1976) that 

(1.6) 

where a and y are the usual bulk exponents for polygons and walks (see e.g. Guttmann 
and Whittington (1978) for definitions). In § 2 we show that 

y11 s 1, (1.7) 

which is an improvement on (1.6), but this collection of bounds is still not very stringent. 
In order to make further progress, additional assumptions are necessary, and 

perhaps the most interesting predictions come from surface scaling (Barber 1973). This 
theory predicts that y1 and yl l  are not independent, but are related to one another and 
to the bulk exponents y and v (the correlation length exponent) through 

(1.8) 

a - 1 s y11 s y1 s $( 1 + y )  

2y1= y11f y + v. 
Bray and Moore (1977) have argued for a second scaling relation 

y11= v - 1 (1.9) 

and (1.8) and (1.9) would then imply that these surface exponents can each be expressed 
in terms of bulk exponents. 

For the two-dimensional Ising problem (1.9) is exact (McCoy and Wu 1973) and 
(1.8) is strongly supported by numerical evidence (Enting and Guttmann i 980). 
Numerical results on the three-dimensional Ising problem (Whittington et a1 19'1 9) are 
also consistent with the value of y1 obtained from (1.8) and (1.9). 

For the self-avoiding walk problem there have been a number of attempts to 
estimate y1 from series analysis work (Lax 1974, Mark et a1 1975, Middlemiss and 
Whittington 1976, Ma et a1 1977, Barber eta1 1978). The estimate y1 = 0.70 * 0.02 has 
been given for the cubic lattice (Barber et a1 1978), and :hest/ x r o r  bars would include 
the central estimates of y1 on all other three-dimensional lattices studied. This just 
includes the scaling prediction. Again for the cubic lattice, yl l  ha5 been estimated as 
-0.35 k0.05, which also just includes the scaling predictiut. In two dimensions 
equation (1.8) appears to agree well with the series data, but there is a clear dis- 
agreement between the value of yl l  given by (1.9) and the result from series analysis 
(Barber et a1 1978). 

In this paper we present some further exact enumeration data in an attempt to refine 
the estimates of y1 and yl l  ;:1 three dimensions. Our experience of estimating the 
exponent characterising the divergence of the lengths of terminally attached self- 
avoiding walks led us to concentrate on lattices of low coordination number for whiyh a 
relatively long series could be derived (Guttmann er a1 1978). The obvious choice is 
then the tetrahedral lattice which has, indeed, been examined several times before (e.g. 
Lax 1974, Middlemiss and Whittington 1976). However, there is a choice available as 
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to which plane is chosen as the surface plane defining the half space. The previous series 
work chose one such that only alternate vertices of the walk could lie in this surface, 
which has the disadvantage that alternate members of the sequence c(nl.’) are zero. To 
avoid this, we have chosen the surface plane so that the walk can lie entirely in this plane 
(in a zig-zag or ‘all trans’ configuration). As far as we are aware, no other exact 
enumeration work has been carried out for this orientation, although it has been studied 
by Monte Carlo methods (Clark and La1 1978). 

2. Upper bound on yll 

Let C, be the set of n-step self-avoiding walks on a d-dimensional hypercubic lattice 
(with lattice points being the integer points in Ed) and let cn be the cardinality of C,. The 
coordinates of the ith vertex of the walk are ( X I # ,  X Z ~ ,  . . . , xdl) and X I O  = x20 = . . . = x d 0  = 
0. Let A, be the subset of C, such that x l ,  = 0, xlJ >0 ,  j = 1 , 2 , .  . . , n - 1, with 
cardinality a,, and let B, be the subset of C, such that x l J  > 0 V j  > 0 and x l l  < x l n  V j  < 
n, with cardinality b,. 

We first note that 

(2.1) 

Each walk in An+2 has exactly two vertices in the hyperplane xl0  = 0, and these two 
vertices are of unit degree. By deleting these two vertices and the edges emanating from 
them, we form an n -step walk starting and ending in the hyperplane xl0 = 1 and having 
xl l  3 1 Vj .  Similarly each n-step walk with xl0 = xl ,  = 1, x l J  1 V j  can be converted 
into a walk in A,+* by adding two edges joining its unit degree vertices to the plane 
xlo=O. (Notice that (2.1) will not be true for all lattices but that there will be a 
lattice-dependent constant, 8, such that an+2 =  CL'^^).) 

For a particular walk in A, with vertices at {xlL, xZr, . . . , Xdi ;  i = 0, 1 , .  . . , n }  define 

c(l.l) - , -an+2. 

(2.2) x\m) - - max xll  
I 

and 

j(m) = maxQlxlj = x i ” ) .  (2.3) 

Now construct the vertex set with coordinates {yli, yZi, . . . , Ydi; i = 0 ,  1,  . . . , n} given by 

(2.4) 

This is the vertex set of a walk in B, since 
(i) it is self-avoiding (since the first j steps are self-avoiding, the last ( n  - j )  steps are 

self-avoiding, all vertices up to and including the j th have Xlk Sxi” and all 
vertices after the j th  have Xlk >x:”’), and 

(ii) x l0  = 0 ,  xln  = 2x\”, o < xll  < 2x7, V j  z 0, n. 
Moreover, these walks are distinct members of B, and this construction therefore 
defines an injection from A, +I?,. Hence 

a ,  s b,. (2.5) 
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Now consider an n-step walk W, E B, and an m-step walk W, E B,. These walks can 
be concatenated by translating W, so that its first vertex coincides with the last vertex of 
W,. The resulting graph is a self-avoiding walk and is a member of B,,, and, by 
concatenating each W, E B, with each W, E B, in turn, the resulting members of B,+, 
are distinct. However, not all members of B,,, are obtained in this way (since all such 
walks will have their first n steps on one side of a plane and their last m steps on the 
other side of this plane). Hence b, is a supermultiplicative function 

bnbm s bn+m. 

Since B, = C,, b;'" is bounded above and hence (Hille 1948) 

sup m-l Ig b, = lim m-l lg b, < 03. 
m>O m - w  

In addition we can identify the value of the limit, since 

a, s b, s c, 

and Whittington (1975) has shown that 

(2.7) 

Hence, as n .j a, b;', + p from below. Then (2.5) implies that a:'" + p from below and 
from (1,3), (1.5) and (2.1) we then obtain 

Y11 s 1. (2.10) 

3. Series analysis for the tetrahedral lattice 

We have obtained the first nineteen terms in the cL1) series and the first twenty terms in 
the CL'," series, and the results are given in table 1. The analysis of the series followed 
standard lines (see e.g. Gaunt and Guttmann (1974)) and we shall give only a brief 
account here. We have relied largely on ratio methods with associated Neville tables, 
and ratios of fourth successive coefficients seem to give most satisfactory convergence 
for this lattice (Guttmann et a1 1978). We have therefore formed the ratio estimates 

(3.1) y l ( n )  = 1 +an{cf'/cf?,p'- 1) 

and the linear and quadratic extrapolants 

-,?)(a) = ( n y f - ' ) ( n ) - ( n  -4r)-,?-')(n -4))/4r (3.2) 

for r = 1 and 2, with -,io) i n )  = -yl(n).  The behaviour of these extrapolants is shown in 
figure 1. The value of p used in these calculations was p = 2,8785 (Watts 1975). 

The use of fourth successive coefficients reduces the influence of the expected 
singularity in ,yl at x = -p - l  and also any singularities on the imaginary axis near to 
x = i ip . An alternative approach is to use an Euler transformation such as . --I 

2 = 2x/(1 + p x )  (3.3) 

which moves the singularity at -,U-' to infinity and any singularities at hip-' to 
p-'(l*i), which are then outside the circle of convekgence, though still close to it. 
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Table 1. Coefficients in the expansion of x1 and xI1 for self-avoiding walks on the 
tetrahedral lattice. 

n c(l) c(l,l) " " 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

3 
7 

19 
53 

147 
401 

1 1 2 3  
3 137 
8 793 

24 599 
69 287 

194 967 
550 361 

1 552 645 
4 393 021 

12 425 121 
35 213 027 
99 771 855 

283 162 701 
- 

2 
2 
4 

12 
30 
60 

154 
404 

1 0 4 6  
2 540 
6 720 

17 484 
46 522 

120 300 
323 800 
856 032 

2 315 578 
6 151 080 

16 745 530 
44 921 984 

0 8C 

0 75 

- 
C 

?. 

I 

5- 07C 

0 65 

I I 
010 

-1 
5 

Figure 1. Ratio estimates of y1 from fourth successive terms in series: - y(ll)(n),  the 
linear extrapolants; - - - y r ) ( n ) ,  the quadratic extrapolants. 
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Writing 

X l ( Z )  = b(,l)z", (3.4) 

we have also formed ratio estimates using successive terms in the sequence { b y ' }  and 
corresponding linear and quadratic extrapolants. These results are shown in figure 2. 

The data in figure 1 suggest that y1 is very close to, though possibly just below, 0.7. 
However, it is more difficult to know how to interpret the trend in figure 2. The Euler 
transformation seems to have replaced the odd-even alternation by a wave but it is 
difficult to know if this behaviour will continue. The minimurn in the quadratic 
extrapolant is at about 0.68 while the maximum in the linear extrapolant is at about 
0.72, and we believe that it is most unlikely that the value of y1 could lie outside this 
range. In view of this we take as our final estimate 

which is identical to the estimate for the cubic lattice (Barber et a1 1978). 
The estimation of 7 1 1  is even more difficult since it is small and negative. In table 2 

we give some terms in the appropriate Neville table for extrapolating ratio estimates of 
yl l (n)  corresponding to the definitions of y l ( n )  in equations (3.1) and (3.2). Cor- 
responding results for the estimates from successive ratios of terms in the Euler 
transformed series are given in table 3. 

015 
0 65 5 

0 0 05 0 10 
n-' 

Figure 2. Ratio estimates from successive terms in Euler-transformed series: - linear 
extrapolants; - - - quadratic extrapolants. 
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Table 2. Neville table for estimation of yI1 from ratios of fourth successive terms in series 
expansion. 

n Yll(n) Y ( n  ) d22 ( n )  

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.041 5 5  
-0.002 11 
-0.108 90 
-0.144 5 5  
-0.085 46 
-0,118 07 
-0.147 38 
-0.168 76 
-0.148 5 5  
-0.171 91 
-0.178 15 

-0.129 33 
-0.410 69 
-0,288 22 
-0,228 35 
-0,402 98 
-0.436 96 
-0,262 82 
-0.247 43 
-0.369 37 
-0,373 81 
-0,301 22 

- 
- 

-0.629 02 
-0.202 11 
-0.608 22 
-0,459 95 
-0.237 42 
-0.268 90 
-0,327 36 
-0.286 98 
-0.358 82. 

Table 3. Neville table for estimation of yI1 from ratios of adjacent terms in Euler- 
transformed series. 

n 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.145 63 
0.091 28 
0.052 79 
0.027 05 
0.008 79 

-0,006 48 
-0,021 30 
-0.036 51 
-0.051 88 
-0.066 86 
-0.080 95 

-0.453 20 
-0.452 30 
-0.370 58 
-0.281 77 
-0.228 65 
-0.220 21 
-0.243 66 
-0.279 75 
-0,313 19 
-0.336 49 
-0.348 68 

v::'(n) 

-1.084 36 
-0,448 27 

0.038 01 
0.206 68 
0.090 07 

-0,165 32 
-0,407 85 
-0.550 39 
-0.580 72 
-0.534 53 
-0.458 41 

The -yyi)(n) estimates in table 2 show a residual odd-even alternation with a 
superimposed period-four oscillation. Bearing this in mind, it seems likely that yl l  will 
lie between y?)(19) and y\*?(17). The Euler transformed data has an associated wave 
which makes table 3 difficult to extrapolate. It is possible that the downward trend in 
the last few values of y?) ( n )  in table 3 is about to be reversed (compare the reversal at 
y?? (15)), but we cannot be sure that the trend will not continue. For this reason we rely 
largely on table 2 and suggest 

711 = -0.35 * 0.05. 

4. Discussion 

The bound derived in § 2, y1 .s 1, while not a very serious numerical improvement on 
the previous best bound, yll  C$( l+  y ) ,  has the advantage that it does not rely on an 
estimated value for y. In addition it determines the direction from which the limit of 
{c! ,~ .~)}* '"  is approached. 
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The numerical data in § 3 confirm our previous estimates (Barber et a1 1978) for the 
corresponding exponents on the cubic lattice. The predictions of Bray and Moore 
(1977) (shown by an arrow in figures 1 and 2) are just on the limits of the estimated 
uncertainties in our estimates. 
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